Industry classification groups firms into finer partitions to help investments and empir-ical analysis. To overcome the well-documented limitations of existing industry defini-tions, like their stale nature and coarse categories for firms with multiple operations, we employ a clustering approach on 69 firm characteristics and allocate companies to novel economic sectors maximizing the within-group explained variation. Such sectors are dynamic yet stable, and represent a superior investment set compared to stan-dard classification schemes for portfolio optimization and for trading strategies based on within-industry mean-reversion, which give rise to a latent risk factor significantly priced in the cross-section. We provide a new metric to quantify feature importance for clustering methods, finding that size drives differences across classical industries while book-to-market and financial liquidity variables matter for clustering-based sectors.
SAFE Working Paper No. 397